Laser Design Inc

952-252-3479

Menu
  • Home
  • Products
      • 3D Scanners
          • Portable 3D Scanners
            • Portable 3D Scanners

              Portable Scanners are the ideal option to quickly scan complex shapes and geometric data from objects large or small when you want to go anywhere and inspect anything.

              Portable Scanners >

            • Close
          • Desktop 3D Scanner
            • Desktop Scanner

              Desktop Scanners are the ideal option to quickly scan complex shapes and geometric data from small objects.

              Desktop Scanner >

            • Close
          • Long-Range Scanner
            • Long-Range Scanner

              3D portable scanner that capture precise dimensions of large objects such as wind turbines, ship propellers, airplanes and buildings. Producing 3D scans of the highest quality.

              Long-Range Scanner >

            • Close
          • CT (X-ray) Scanners
            • CT (X-ray) Scanners

              Capture all geometry, both external and internal, of complex and free-form parts.

              CT Scanning Systems make non-destructive evaluation possible.

              CT Systems >

            • Close
          • Metrology Grade Scanners
            • Metrology Grade Scanners

              Need to capture ultra-precise surface data for reverse engineering and inspection?

              3D laser scanning with our high precision scanners are a great solution.

              Metrology Grade Scanners >

            • Close
          • Body Scanners
            • Body Scanners

              3D human body scanners obtain 3D images and models in seconds, making this an ideal solution for full body digitizing and human body modeling.

              3D Body Scanners >

            • Close
        • Close
      • Software & Accessories
          • 3D Anti-Glare Spray
            • 3D Anti-Glare Spray

              To achieve optimal accuracy and results with 3D laser scanning it is often necessary to apply an anti-reflection coating. Helling 3D Scan Spray is especially designed for this purpose.

              3D Scan Spray>

            • Close
          • Artec Studio
            • Artec Studio

              Industry acclaimed software for professional 3D scanning and data processing.

              Artec Studio>

            • Close
          • InnovMetric-Polyworks Software
            • InnovMetric-Polyworks Software

              PolyWorks is a powerful industrial 3D metrology software solution.

              Polyworks Software>

            • Close
          • Geomagic Software
            • Geomagic Software

              Geomagic software offers products for 3D digital realities.

              Geomagic Software>

            • Close
          • SpaceClaim Software
            • SpaceClaim Software

              SpaceClaim empowers engineers to be more creative and deliver products to market faster.

              SpaceClaim Software >

            • Close
          • Volume Graphics Software
            • Volume Graphics Software

              Volume Graphics offers a range of products for the visualization and analysis of CT data and has become a virtual standard for industrial voxel data analysis.

              VG Software >

            • Close
          • ExactFlat Software
            • ExactFlat Software

              ExactFlat enables manufacturers to design, flatten, conduct pattern engineering, nest, cost and create manufacturing and business documentation all on one platform.

              ExactFlat>

            • Close
        • Close
    • Close
  • Services
      • 3D Scanning
          • Parts & Objects
            • 3D Scanning - Parts & Objects

              3D scanning converts physical objects into precise digital models, enabling you to quickly and accurately capture your object’s shape and geometries.

              3D Scanning>

            • Close
          • Buildings & Structures (BIM)
            • 3D Scanning - Buildings & Structures

              Terrestrial 3D scanning is a ground-based technique for collecting high-density spatial imaging with millions of coordinates quickly and accurately.

              Buildings & Structures (BIM)>

            • Close
          • Aircraft, Vehicles & Large Objects
            • Aircraft, Vehicles & Other Large Objects

              Terrestrial & Mobile 3D scanning are techniques for collecting high-density spatial imaging with millions of coordinates quickly and accurately for your aircraft, vehicles and vessels.

              Large Object 3D Scanning>

            • Close
          • ITAR – Weapons
            • ITAR - Weapons

              Laser Design is committed to investing in secure resources that ensure that all of our ITAR data is stored in a manner that meets or exceeds the ITAR requirements. With Laser Design you know your ITAR project is not only compliant but being fulfilled by a company that is registered.

              ITAR - Weapons>

            • Close
          • Industrial CT Scanning
            • Industrial CT Scanning

              Metrology grade Computed Tomography (CT) inspection allows a complete 3D capture of complex internal geometry of parts without needing visual access – the process is nondestructive.

              CT Scanning>

            • Close
          • Reverse Engineering
            • Reverse Engineering

              Reverse engineering using 3D scan data is the most efficient way to generate a CAD model from a physical object that has any kind of complex or freeform shape.

              Reverse Engineering>

            • Close
          • Inspection & Metrology
            • Inspection & Metrology

              Helping to solve your most demanding dimensional inspection issues, digitizing, calibration, certification and all other facets of manufacturing that have to do with 3D metrology.

              Inspection & Metrology>

            • Close
        • Close
      • Point Cloud Modeling
        • Point Cloud Modeling

          If you have a scanner but would like help taking your point clouds to CAD format then let the 3D experts help! Everything from small plastic parts, blades to entire ships and buildings.

          Point Cloud Modeling>

        • Close
      • Scanner Rentals
        • Scanner Rentals

          Laser Design’s knowledgeable rental staff has actual project experience with the 3D equipment we provide.

          Scanner Rentals>

        • Close
      • 3D Photorealistic Rendering
        • 3D Photorealistic Rendering

          Moving from 2D to 3D improves how your ideas and concepts are shown and communicated. When you’re able to show your designs in 3D verses a static 2D drawing the experience is more realistic.

          3D Photorealistic Rendering>

        • Close
    • Close
  • Solutions
      • Industries
          • Aerospace
          • Anthropology
          • Architecture, Engineering, Construction
          • Automotive
          • Bridge
          • Consumer Electronics
          • Defense
          • Education
          • Entertainment
          • Forensics
          • Foundry
          • Heavy Machinery
          • Heritage
          • Hydro Power
          • Law Enforcement
          • Legal
          • Machine Shop
          • Marine
          • Medical
          • Mining
          • Oil & Gas
          • Online Retail
          • Orthotics and Prosthetics
          • Petrochemical
          • Plastics
          • Power Generation
          • Tunnels
          • Wind Power
        • Close
      • Applications
          • 2D to 3D CAD Conversion
          • Accident Reconstruction
          • Alignment
          • As-Built Documentation
          • Asset and Facility Management
          • Body Scanning Application
          • CAD-Based Inspection
          • Class A Surfacing
          • CGI and Visual Effects
          • Contract Inspection
          • Computer Aided Verification
          • Crime Scene Analysis
          • Dimensional Analysis
          • Electronic Site Survey
          • Emergency Response Scanning
          • FEA – Finite Element Analysis
          • First Article Inspection
          • Form Analysis
          • Gear Inspection
          • Incoming Inspection
          • In-Process Inspection
          • Large Part Inspection
          • Litigation Support
          • Machine Calibration
          • Non-Contact Inspection
          • Photorealistic Modeling
          • Product Design
          • Reverse Engineering
          • Robot Calibration
          • Scene Documentation
          • Tool Building and Setup
          • Virtual Simulation
        • Close
    • Close
  • About Us
    • About Laser Design
    • Why Choose Laser Design?
    • Customer Testimonials
    • 3D Technologies Used
    • Careers
    • Partner Programs
    • Terms and Conditions
    • Contact Us
    • Locations
    • Close
  • Locations
    • United States Locations
    • Close
  • Learning Portal
    • Sample Files
    • Blog
    • Case Studies
    • News
    • Videos
    • What is 3D Scanning?
    • 3D Technology Glossary
    • ROI of 3D Scanning
    • Close
  • Contact Us

Capture 15,000 Points Per Second By Equipping CMM with Laser Probe

November 19, 2014 by Andrew Larson

Laser scanners capture thousands of points every second, drastically improving reverse engineering and inspection speed and accuracy. As a result, many companies are either replacing their Coordinate Measurement Machines (CMMs) with laser scanners or purchasing laser scanners instead of CMMs as they expand their operations. But other companies are looking at the large investments they have made in their existing CMMs and asking if they can be preserved or enhanced by equipping them with a laser probe. The answer is yes, a CMM can be quite easily equipped with a laser probe at a cost that typically runs only 25% of the cost of a new laser scanner. A laser probe can reduce the time needed to measure complicated parts from hours or even days to just minutes. The operator can convert from laser probe to conventional touch probe in a matter of minutes, so none of the functionality of the original CMM is lost. This article will explore the advantages of using a laser probe with a CMM and explain how it can be accomplished with minimum trouble and expense.

CMM’s wide popularity

Originally introduced in the late 1950’s by Ferranti, CMMs began to achieve wide popularity during the 1970’s when they became the gold standard for quality control and reverse engineering. CMM’s key advantages include the ability to measure individual points to a high level of accuracy and to move from sample location to location under computer control. Trends of the past decade, however, have highlighted several weaknesses. Part geometry has grown increasingly complicated and, in particular, 3D contours are becoming more and more common. As geometric complexity grows, the number of points required for accurate measurements increases at an exponential rate. Frequently, tens of thousands and sometimes hundreds of thousands or even millions of points are required to accurately model geometrically complicated parts. The result is that the time needed to capture points one by one has grown to days or sometimes weeks for complicated parts. A contact probe is also limited in the geometries that it can accurately reverse engineer. Some parts have indentations that are too small for the probe to enter. Another trend that is affecting the usefulness of CMM machines is the increasing use of new materials that present problems for contact probes used on a conventional CMM. Some parts are so flexible that it is very difficult to contact the surface with a touch probe without creating an indentation that detracts from the accuracy of the measurements. Other parts have surfaces that could easily be scratched or otherwise damaged by a CMM probe.

Rise of laser scanning

Laser scanning is a new technology that can easily overcome these problems, making it ideally suited for today’s quality control and reverse engineering challenges. Laser scanning systems work by projecting a line of laser light onto surfaces while cameras continuously triangulate the changing distance and profile of the laser line as it sweeps along, enabling the object to be accurately replicated. The laser probe computer translates the video image of the line into 3D coordinates, providing real-time data renderings that give the operator immediate feedback on areas that might have been missed. Laser scanners are able to quickly measure large parts while generating far greater numbers of data points than probes without the need for templates or fixtures. Since there is no contact tip on a laser scanner that must physically touch the object,the problems of depressing soft objects, measuring small details, capturing complex free form surfaces are eliminated.

Instead of collecting points one by one, the laser scanner picks up tens of thousands of points every second. This means that reverse engineering of the most complicated parts can often accomplished in an hour or two. Laser scanning can reverse engineer parts that are so complex that they would be practically impossible one point at a time. Finally, the software provided with the scanner greatly simplifies the process of moving from point cloud to computer aided design (CAD) model, making it possible in minimal time to generate a CAD Model of the scanned part that faithfully duplicates the original part. Special, but readily available software can be used to compare original design geometry to the actual physical part, generating an overall graduated color error plot that shows in a glance where and by how much, surfaces deviate from the original design. This goes far beyond the dimensional checks that can be performed with touch probes on CMMs.

Need for laser probe

While many companies have purchased laser scanners, others have already made considerable investments in CMMs that are still in excellent condition. Recognizing that the machine base and motion control system of a laser scanner is nearly identical to that found on a laser scanner, they have asked if they could simply upgrade a CMM with a laser probe. Recently, laser probes have become available for existing CMM machines. The laser probe ismounted to the CMM in place of the traditional contact probe. The laser probe comes with a computer that collects
the laser scan data and converts it to a 3D point cloud. Integrating the laser probe with the CMM is relatively simple because a laser probe, unlike typical touch probes, does not need to be in an exact location to measure because of its large field of view. It just needs to know exactly where it was when the data was collected so that the scan data can be accurately positioned in space. With a depth of field ranging from one to several inches, all that matters is that the laser probe pass through the area of interest on the part. The most popular method of integration is for the CMM’s motion system to guide the probe while probe computer monitors the encoders to track position. Another option is for the laser probe’s PC to actively control the CMM position, even to the point of using feedback from theprobe to keep the part surface in its field of view.

The laser probe can be operated in either joystick mode or programmed for automated inspection. In the joystick mode, the laser probe is attached to the CMM and is controlled by its own PC, which is independent of the CMM’s control system. The operator observes the data captured on the probe computer screen, plans and executes the next move, and continues until the desired coverage is achieved. Alternatively, in an installation that includes a communication link between the probe and CMM controller, the operator can set up moves on the probe computer that are sent to the CMM controller and even modified on the fly to track surfaces in response to feedback from the laser probe. This mode also allows for entire part inspection sequences to be stored, recalled and repeated.

Interfacing Mechanics

The first step in interfacing the laser probe to the CMM is capturing the machine position. An encoder interface unit is integrated into the CMM electronics to achieve this. Some motion transports are so accurate the error contribution relative to the probe is small and can be ignored. Many CMMs, however, are designed to tolerate errors that are mapped and stored for recall to correct raw encoder readings.. If the CMM uses this type of volumetric compensation, the native comp table needs to be translated to the probe computer format. The volumetric approach compensates for linearity and squareness errors, but for straightness errors, angle compensation is also required. For straightness correction, it
is not practical to simply store large tables of position corrections. Rather, parameters must be stored that characterize the CMM, so that for each position, not only is acorrected x,y,z coordinate developed, but also an orientation is supplied. This allows the corrected x,y,z to be extened to the active work area of the laser probe. If the CMM controller can accept a trigger from the laser probe, the native correction methods can be utilized. If the CMM controller cannot accept the trigger, a laser probe correction must be installed.

The laser probe can be mounted to the CMM in any orientation. Once mounted, the orientation relative to the motion transport must be determined. From then on, the laser controller can develop coordinates on the part surface combining probe reference frame coordinates with motion transport coordinates. To measure the relative orientation between the probe and transport, the laser probe control software uses an alignment utility that calls for the probe to be moved around a sphere to derive the transformation.

Conclusion

All in all, equipping a CMM with a laser probe can dramatically improve productivity by capturing up to 15,000 points per second, dramatically reducing reverse engineering and inspection time. The ability to capture complete geometries rather than a limited number of points improves accuracy. The non-contact laser probe easily measures free-form shapes, delicate parts and difficult geometries. Laser Design’s quick and simple CMM laser kit is the lowest cost way to take advantage of laser scanning technology.

Filed Under: Case Studies, White Papers

About Laser Design

Laser Design, a CyberOptics Corporation Brand, has been a leading supplier of 3D scanning systems and services since 1987. Laser Design helps customers successfully solve their most complex 3D inspection, analysis, and reverse engineering challenges quickly, giving them a competitive advantage.

Whether the 3D solution needed is a new 3D scanner or a service project performed in our lab or at your site – Laser Design’s expert metrologists and experienced engineers have you covered – on your schedule, within your budget and with ultra accuracy & results our customers have come to expect.

  • Learning Portal
    • Sample Files
    • Blog
    • Case Studies
    • News
    • Videos
    • What is 3D Scanning?
    • 3D Technology Glossary
    • ROI of 3D Scanning
ldi-exp_246-254

What Customers are Saying…

Mindspring“We demanded very high accuracy between the scan data and 3D solid models delivered – and Laser Design worked with us to insure the accuracy was there where we needed it”. –J.D. @ Mindspring

Question about 3D Scanning?

Ask a 3D Expert>>

Sign-up for our eNews:

  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Videos
  • eNews
Sign-up For Our Newsletter
PRODUCTS
  • 3D Scanners
    • Portable 3D Scanners
    • Desktop 3D Scanner
    • CT (X-ray) Scanners
    • Metrology Grade Scanners
    • Body Scanners
    • 3D Scanners for CMMs
  • Software & Accessories
    • 3D Anti-Glare Spray
    • Artec Studio
    • InnovMetric-Polyworks Software
    • Geomagic Software
    • Space Claim Software
    • Volume Graphics Software
    • ExactFlat Software
SERVICES
  • 3D Scanning
    • Parts & Objects
    • Buildings & Structures (BIM)
    • Aircraft, Vehicles & Large Objects
    • ITAR – Weapons
    • Industrial CT Scanning
    • Reverse Engineering
    • Inspection & Metrology
  • Point Cloud Modeling
  • 3D Photorealistic Rendering
  • View all services »

Solutions
Industries
Applications

About Us

Learning Portal

Contact Us
Laser Design
5900 Golden Hills Drive
Minneapolis, MN 55416

All Locations

Terms of Use | Privacy Policy | Contact Us | 952-884-9648

© 2023 CyberOptics Corporation. All Rights Reserved.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie SettingsACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
SAVE & ACCEPT